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AbstracL ?he nature of the lowtemperature phase of the f J lsing spin glass on 
extended Bethe lattices is studied. It is proved analyfically that the distribution function 
of overlaps, P ( q ) ,  has the form P ( q )  = 6 ( q -  g(T, H)) at any temperature when the 
open boundary condition is adopted. On the other hand, many approximate soIution8 are 
found for the equations of state for spin glasses on randomly connected lattices which 
are locally equivalent to the Bethe lattice. The cquations of state are solved numerically'. 
Tbe distribution P ( q )  in the low-temperature region is broad but still has a peak. ?he 
marginal stability of the solutions is confirmed numerically. ?he stmcture of the solution 
space is also investigated and consequently the present results suggest the aistence of 
the ultra-metric structure, though the precision of data far the present restricted syslem 
sue is not sufficient to exclude other possibilities. 

1. Introduction 

Urious theoretical approaches to random spin systems are classified into essentially 
two categories. The first is to treat random systems in finite dimensions by numerical 
methods, such as Monte Carlo simulations [1,2] and the numerical transfer matrix 
method. The second approach is to try to find various useful concepts for spin glasses 
using mean-field models such as the Sherringto*Kirkpatrick (SK) model [3] and to 
discuss their applicability to real systems, though historically the first one follows 
the second. The first approach has a remarkable merit in realization of random 
spin systems. For example, the first confirmation [1,2] of the existence of the phase 
transition was performed numerically in three dimensions. The divergence of the 
correlation time below T, prevents complete understanding of the nature of the low- 
temperature phase. On the other hand, the second approach based on studies of the 
SK model contributed to finding many concepts about spin glasses such as replica- 
symmetry breaking [4,5], ultra-metricity [6,7], etc. There are, however, several critical 
arguments [8,9] which suggest that the nature of the low-temperature phase of finite- 
dimensional systems may be quite different from that of mean-field models. 

From this viewpoint, it is desirable to investigate another type of mean-field model 
which is expected to be more similar to real systems than the SK model. The random 
spin systems on the Cayley trees which we study here from this new viewpoint were 
originally studied by Matsubara and Sakata [lo] using the method of the distribution 
function of an effective field. This method proved to be useful in determining various 
phase boundaries [10,11] in the T-p diagram with no external field. It is, however, 
not so powerful in determining the phase boundary in the T-H diagram. Carlson et 
al reported in 1121 that all the moments of the distribution function are non4ngular 
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functions of T and H while it is shown [13] that there exists a transition line in the 
T-H plane on which the influence of the boundary condition reaches far inside the 
system. The phase boundary may correspond to the AT line for the SK model. There 
is, however, no such explicit theory on the present model as Parisi's theory on the 
SK model to clarify the nature of the low-temperature region. There is an expansion 
theory [14] on the present model by the replica method. This theoly is expected to be 
correct near the critical point, but the relationship between Parisi's order parameter 
q(z) and the distribution function of overlaps, P(q) ,  is not so straightforward in this 
thory as in the case of the SK model. 

Recently Dewar and Mottishaw [U] studied the Cayley tree with boundary 
spins connected to each other using essentially the same method as Nemoto and 
'Bkayama [16] used for the SK model. Although their data have relatively large error 
bars, they suggested the marginal stability of solutions in a low-temperature region. 
Lai and Goldschmidt [17] performed Monte Carlo simulations in various networks. 
They suggested that for open boundary systems the distribution P(q)  converges to a 
single delta peak and they urged that the low-temperature phase is replica-symmeaic. 
Their procedure of eliminating the boundary sum is, however, not sufficient in that 
they fixed the number of generations to be eliminated for all their system sizes. They 
also simulated the relevant systems on randomly connected networks with a finite 
average of connection numbers and they showed that the behaviour of P(q)  in the 
spm glass phase is qualitatively different from that in the paramagnetic phase. 

In the present paper we first prove analytically that P( q )  for open boundary sys- 
tems reduces to a single delta peak even if the careful limiting procedure is adopted. 
Next, for randomly connected networks with three neighbours for each spin, we show 
numerical results similar to, but more improved in accuracy than, those of Dewar 
and Mottishaw. We also discuss several features characteristic of the low-temperature 
phase. 
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2. P(q) for open boundary systems 

As was emphasized by one of the present authors [18,19], the concept of emerging 
order induced by the increase of the system size for a fixed boundary field plays an 
essential role for the study of any phase transitions. 

We show first the equivalence of two definitions of P(q)  for open boundary 
systems. This equivalence is proved for the SK model in [ZO]. Next we show that 
the variance of P ( q )  vanishes at any temperature and in any homogeneous external 
field. The Hamiltonian of our system is 

lb define overlaps, let us consider two systems which are different from one 
another oniy by their boundary fieids hi ( i  E an). AS was pointed out in [izj 
and [U], one can expect to find bulk behaviour only in a small region far from the 
boundary. This can easily be seen in an example of ferromagnets on the Cayley trees 
[Zl] in which there exists no spontaneous magnetization at any temperature when 
the magnetization is defined over the whole system. Hence we define overlaps on a 
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Figure 1. n e  suppon of the over!aps is a s_ublattice n which is embedded in A. The 
random field is applied on the boundary of R. 

sublattice R with the radius G (see figure 1) and take the limit G + CO after taking 
the limit 6 3 CO, where 6 is the radius of fi. 

The two definitions of the distribution of overlaps are given in the following, by 
specifying each configuration of the boundaly field by Greek letters. Namely we have 

in our system with the boundary fields {A"}, where mp I (Sp) and Sp is a spin 
variable which takes + 1  or -1. The above expectation values are defined by 

Tr[exp (-P'H(A", J )  - P'H(Ap, J ) )  X ]  
Tr[exp(-P'HH(Aa,J) - P X ( A p , J ) ) ]  

( X )  I 

(X),,= W{Ao)W{Ap]X W{A"]W{Ap)l 
( A a ) v ( A b )  ( A * ) . { A b I  

and 

where W{Ao) and W{J} are the weights of the boundary fields and of the bond 
configurations, respectively. In order to show that P(q) = P ( q ) ,  it is sufficient to  
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prove that the variance of the distribution function Pz;’’( q)  5 (6 (q  - 4)) is equal 
to zero for any A“, A@ and J ,  since the equation 
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holds in this case. The amplitude of the thermal fluctuation of the overlap 4 for 
certain realization of the boundaq-field configuration and of the bond configuration 
can be written by correlation functions between up’ and U;@ where usa SpSf. 
That is, we have 

( X ;  Y )  s ( X U )  ~ ( X )  (Y) . (7) 

As shown in appendix A, the quantity I(u~@;uy@)( is bounded from above by 
[tanh(PJ,,,)]”’~ with the maximum absolute value of the coupling, .Ima,. Thus 
it is easily shown that ( G 2 )  - (q )2  converges to zero in the thermodynamic limit. 
Hence the equivalence of the two definitions is confirmed. 

outline of the proof on this reduction is shown here and details are described in 
appendices. Let us first present the definitions of the relevant quantities, as follows: 

X&, .”e she::. hew P ( q )  i:: (3) :ed---̂  :e a .ixg!e de!tr F-xt iGx.  Qx!y the 

and 

Here, U] indicates the ‘mother’ site of the site j, and ‘2, (or fij) is a subset of 
R (or fi) which are connected to the centre through the site j (see figure 2). The 
symbol A, in such expressions as q;@( A j  , J,) indicates all the surface-field variables 
charged on 86;. and, similarly, J i  indicates all the bonds that have at least one 
end point in 6,. Although these symbols are the same as local variables at the site 
labelled by ‘ j ’ ,  there is no fear of confusion since the meanings of the symbol will be 
clear from the contexts. The weight w( SEl) is an arbitraly distribution function, and 
(. . .)%, is defined by 

T ~ , ; , ~ ! ~ ~ ~ ( - ~ ~ ) - ( A ~ :  ~ j )  - p % j ( ~ , P :  J ~ ) ) x !  mij 
Trfi,[exp(-P’Hj(AY, J j )  - P‘H,(A:, J j  ) ) I  

(10) 
‘Hj(Aj?J,) J k , [ k ] s k s [ k ] -  H S k -  A k s k ‘  

k E f i j  k € f i j  k C S f i j  
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In addition, let us define several moments of the distribution functions. 

U E 1 - m 2 I [ ( q ( A , J ) ’ ) , I J  E [ ( q ( A , J ) ) , J J  
JII )  E &9) - (m(9))2  (11) 

E [(qj(Aj~Jj)z) , , j IJj  m(g) = [(qj(Aj*Jj))*jlJj 

where j is an arbitrary site located (9 - 1) steps inside from the boundary an. Here 
we have omitted the replica indices a and p. 

II 
Center * r-7 

Flgure 2. R;  is a branch which is connecled to the site i. The overlap q;(A,, J ; )  in 
the l a 1  is defined an R,. 

Then we can show the following equation. 

Similarly, the variance ~ ( 9 )  can be evaluated using the following recursive equation. 

v(gtl) = - u ( ~ )  + O((z - l ) -g , tLax)  

It can be seen by solving these two equations that the variance U converges to zero 
in the limit G - W. The details are given in appendix 2. 

It should be noted that the absence of variance which has been proved here is 
essentially different from the fact that there exists no finite spontaneous magnetization 
in a ferromagnetic spin system on the Cayley tree [21]. The reason for no spontaneous 
magnetization in the latter case is that the ‘magnetization’ was defined over the whole 
system 6. If we define magnetization only on similarly to the above definition of the 
overlaps, we find that a finite magnetization is induced by an infinitesimal magnetic 
field applied on afL. 

As we have mentioned in section 1, there exists a certain phase boundary in the T- 
H plane corresponding to the AT line. The low-temperature region is characterized 

(13) 
1 

2 - 1  
(g = 1 , 2 , .  . . , G -  1) 
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by the fact that an infinitesimal fluctuation of random fields on the boundary afi 
induces a finite fluctuation in the expectation value of each spin in 0. On the other 
hand, it has been clarified that the distribution function P(q)  for the open boundary 
systems reduces to a single delta function at any temperature and in any homogeneous 
extemal field. In this sense, we may call the low-temperature phase of open boundary 
systems ‘replica-symmetric’. We can also conclude from these facts that there exist 
many phases in the low-temperature region and that the expectation values of spins 
change independently, in essence, when one jumps from one phase to another. As a 
result, the relative fluctuation of the macroscopic overlap function becomes vanishing 
below the critical temperature. 

3. Randomly connected systems and numerical calculations 

In this section we discuss spin glasses with ‘closed‘ boundary conditions. There are 
several versions of this type of boundary conditions. For example, one can define 
Cayley trees with connected boundaries [14] in which the boundarysites are connected 
randomly to each other so that the connection number may be equal to z for each 
site. In these lattices there is no topological equivalence among all the sites and the 
lattice bas one special ‘centre’ site (or bond). Another possible choice is to consider 
randomly connected network [16] with a finite average of connection number in 
which each arbitrary pair of sites are connected with probability z / N ,  where N 
is the number of sites. One can also define randomly connected network with a 
finite fixed connection number in which z N f 2  bonds are distributed randomly with 
the constraint that z bonds should meet at each site. We believe that the essential 
propelties derived from the last two definitions are qualitatively the same in a large 
enough system. In a finite system, however, some peculiar lattices which make the 
resclt obscure are more likely to be generated by the second definition than by the 
last one, because of a finite ratio of sites at which less than (more than) z bonds 
meet. In the present paper we adopt the last definition. 

We investigate, by means of numerical calculations, the ?cJ king model on the 
networks with z = 3 defined above. The distribution of the coupling is taken to be 
symmetric (i.e. P ( J  = fl) = $ ). Unfortunately there is no satisfactory argument 
on the relationship between the solutions of the equations of state for finite systems 
and the pure states in the thermodynamic limit. Here we assume that two types of 
configurations of finite systems correspond to the configurations of pure states in the 
limit. Therefore we search the configurations which satisfy one of the following two 
conditions. 

We call hereafter the configurations satisfing the conditions I and 11, of type I and 
of type 11, respectively. It is natural to  expect that the configurations of type I which 
minimize locally the free energy are continuously connected to the pure states in 
the thermodynamic limit. On the other hand, the configurations of type 11 minimize 
the free energy with the constraint that the susceptibility matrix should be singular. 
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Therefore, it is also natural and is supported numerically [15] for the SK model 
that the configurations of type I1 correspond to pure states if the pure states are 
marginally stable as is conjectured [ZZ]. This marginal stability for the present system 
is supported by the calculations for the solutions of type I, as will be presented below. 
These above-mentioned strategies are originally adopted in the investigations of the 
SK model by Nemom and l’dkayama (161. The conditions (14) and (15) can be stated 
more simply. Namely, the solutions should give the local minima of the squared norm 
g{m) of the gradient of the free energy defined by 

The free energy and its derivatives are given as follows [U]: 

l + m i  l + m i  1 - m i  log-) l - m -  
2 2 2 

log- + - 

Yi2I (1 -t;j)(l -c ; j / t$ ) ( l -q i / t j i )  
(1 - mf) ( l  - nj) + $ 4 1  -k Cij€ji/tij l (  

€..  
tji 

t a n h - l l l  - tanh-’mi 

- P H c m i  (17) 

where 

p . .  11 = - m. i - t . .  v m j  t i j  tanh p J i j  

We can obtain the equation of state by setting the right-hand side of [18] equal to Zero. 
It should be noted that we have assumed here, even in the low-temperature region, 
the applicability of the equation of state (i.e. 1181) which is obtained by supposing that 
there is no multi-body effective field. That is, we have assumed that tracing out the 
degrees of freedom of all the spins except one site and its nearest-neighbours results 
in the appearance of certain effective fields on the nearest neighbour sites. It is clear 
that this assumption is not correct in finite systems, because there exist many loops 
with finite length which induce multi-body effective fields. In the thermodynamic 
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h i t ,  however, the probability is zero that we find at least one finite loop which 
includes a certain spin. Thus we can expect that there exists a certain condition under 
which the above assumption is correct in the thermodynamic limit. For example, this 
assumption probably holds in the paramagnetic phase in which there is essentially 
only one solution. We believe also that there is a validity condition on the equation 
of state which corresponds to the condition for the SK model gien in 1221. This 
validity condition is equivalent to the convergence condition of the expansion series 
of Gibbs' free energy with respect to the coupling. The boundary of the convergence 
region is located at the point where the susceptibility matrix is singular [24]. Thus 
we eliminate solutions for which the Hessian matrix (fij) has negative eigenvalues, 
because these solutions are expected to lie beyond the validity condition. 

In our explicit calculations we adopted the Marquardt method for minimizing 
the function g{mi} using its first and second derivatives. We have also used the 
steepestdescent method when the Marquardt method is unstable. 

N Kawashima and M Suzuki 

h 
0 

ffi w m 
E 
3 z 

NUMBER OF TRIALS 

F @ n  3. Number of solutions (RS) vemus number oi trials. N = 20 and T = 0.5. 

We have investigated finite systems with the numbers of spins, 12, 16, 20, 24, 28 
and 40. For each system size we generated 100 bond configurations. For each of 
these configurations, 100 through 4000 trials were performed. One trial starts with 
generating the initial spin configuration {mi}, next the mi's are changed one by one 
so that the exchange energy may be lowered until the stable configuration is reached, 
and then all the mi are changed simultaneously by the above algorithm to lower 
the function g{mi}. During the first two of these three processes, the { m i }  are 
restricted to be +1 or -1. The numbers of trials are determined so that almost 
all the solutions may be found. The dependence of the numbers of solutions on 
the typical time (numbers of trials performed) is shown in figure 3 for N = 20 and 
T = 0.5. Since we could not afford a sufficiently large number of trials to find almost 
all the solutions for N = 40, we did not use the data for N = 40 in estimating the 
coefficient & defined below. The numbers NJ of solutions of type I are found to be 
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0.20 / ' " ' " ' " ' ' l ~  " ' I " .  

0.15 - - 

X 
h 

b - 0.10 
4 

- - 
X 

w 
0 

1 

0'05 1 , ( , , I , ,  , , /  ,,,;l:,:,*,j,"l ,I 
0.00 

0 0.25 0.5 0.75 1 1.25 

T 
Flgum 5. The coefficient a(") defined by fi,(T, N )  o : e x p ( & ( T ) N )  versus temper- 
ature. The exact critical point T, is I/tanh-'(I/&) 9 1.13. 

very small compared to those of solutions of type I1 (Nf'). There are only 0 , l  or 2 
solutions of this type for each bond configuration at any temperature below T,. The 
size dependence of ,6'* N i  + N," is shown in figure 4 for various temperatures. 
The data are well fitted by the exponential law as is also the case with those for the 
solutions of the TAP equation (25). 



4862 N Kawashima and M Suzuki 

In figure 5 we show the coefficient &( T) defined by 

N,(T,A') 0: e x p ( * ( T ) N ) .  (21) 

Although it must be noted that we cannot identfy with the true number of pure 
states N. because of the degeneracy of solutions in the limit N - 00, we can see 
from figure 5 that the onset of non-zero B ( T )  occurs at the critical point T,. 

I I 

0.1 , , , -$ 
10 20 30 40 50 

Number of Sites 

Figure 6. 
T=0.5,0.6,0.7,0.8,0.9and 1.0fmmthetoptotheboltom. 

?he smallest eigenvalues of Ihe Hessian matrix ji, for type I solutions. 

In figure 6 we show the average of the smallest eigenvalues for the solutions of 
type I. We can see from this figure that the smallest eigenvalues tend to Zero when 
the system size becomes large. This supports the conjecture of the marginal stability 
mentioned above. 

We also calculate the distribution function of the overlaps 

where 

w,, E e x p ( - P F { m f } )  

fiere ii anb i; speiipj 2; 2i*,ii:iai.y. of sa~i:ioiis o'up&pb, in figuie 7, pjqj k 
shown for N = 40 and T = 0.6. As is expected, the overlaps in the low-temperature 
region have broad distributions, correspondingly to the existence of many pure states 
in the thermodynamic limit. The size dependence of P ( q )  is not clear enough 
to  predict in detail the shape of this function in the thermodynamic limit. More 
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0.20 I ” ” I ” ” l ” ” I ” ” ~  

0.15 - 

h 2 0.10 - 
a 

0.00 I , , ,  , I I , , ~ I <  , , , I , , , ,  
0 0.2 0.4 0.6 0.8 1 

Plgure 7. The distribution function of overlaps for N = 40 and T = 0.6 

calculations for larger systems are required in order to determine P ( q )  preciseiy. 
On the other hand, above the critical temperature, P ( q )  is a single delta function, 
because in this region there is only one solution (mi = 0 for all i )  for any bond 
configuration. 

Furthermore we examine the ultra-metric structure which is proposed for the 
structure of the solution space of the SK model. We show in figure 8 the following 
distribution function. 

P ( q , , q , )  3 J d 4 3 ( P ( ~ l > q 2 > q 3 )  + P ( q z , q , , q 3 ) ) / 2  (24) 

where 

P(ql,qZ,q3) = w , w , w p ~ ( s l  - m i n ( { q p Y , q Y p , q p ” } ) )  

x 6(q2  - m i d ( { q ’ ” , q Y P , q P ’ ~ ) )  

x 6 ( q 3 - m a x ( { q ’ ” , q Y P , q P ’ } ) ) .  (25) 

’,“,P 

We can see, from figure 8, that there exists a strong positive correlation between q1 
and q2 suggesting the ultra-metricity 

41 = 42 > q3 (26) 

though we can not exclude other possibilities. 

4. Summary and discussions 

We have proved that the distribution function of overlaps P( q )  consists of a single 
delta peak in the case of the Cayley trees with random external fields applied on their 



4864 N Kawashima and M Suzuki 

0.5 

-0.5 

- 1 . 0  
-1.0 - 0.5 0 0.5 1.0 

41 
Flgum 8. Ihe dislribulion function P ( q l ,  q z )  defined in the text. Ihe degree of darkness 
of the boxes indicates the magnitude of P ( q l ,  q z ) .  For a m p l e ,  white space mcans that 
P(q1,qz)  < 0.25 and the darkest boxes mean that P(q1,qZ) > 2.00. Here we have 
studied the case that T = 0.5 and N = 40. 

open boundaries. On the other hand, P(q)  has a non-trivial structure in the closed 
boundary case. We can interpret these facts as follows: Even in the closed boundary 
case the local structure of the lattice is the same as in the open boundary case as far 
as the system size is infinite; that is, for an arbitrary spin one can find a Cayley tree 
embedded in the system with an arbitrary sue which contains the spin as its centre. 
In such cases, every pair of boundary spins of this Cayley tree is connected by very 
long chains of bonds outside the tree. These chains are responsible for the different 
behaviours caused by the different boundary conditions. In the paramagnetic phase, 
however, the range of the correlation is short and these long chains have no influence 
on the spins at their end-points. As a result, there is no difference between the open 
and the closed boundaries in the paramagnetic phase. At the critical point, the range 
of the correlation becomes infinite. At this point, the correlation caused by the long 
chains outside becomes finite and, at the same time, the influence of the boundary 
fields reaches the centre spin. Hence the nature of the open boundary system differs 
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from that of the closed boundary system in the low-temperature region. 
In both two cases there are many phases below T,. In the open boundary case, 

however, the expectation values of spins change independently to each other when one 
jumps from one phase to another. AY a result, P (  q)  reduces to a single delta peak 
It is well known that in higher dimensions than three the ferromagnetic king model 
has many phases characterized hy domain walls although we do  not call it replica- 
symmetry breaking. We consider that the many phases which have been observed by 
charging infinitesimal random fields are similar to these domain wall phases. From 
this point of view, we should not call the low-temperature phase of the open boundary 
systems replica-symmetry breaking. 

On the other hand, the expectation values change coherently in the closed bound- 
ary case and P(q)  has a non-trivial structure. The marginal stability of the solutions 
has also been confirmed numerically in this case (section 3). The logarithm of the 
number of solutions is proportional to the system size and the coefficient & is finite 
below T'. It is also suggested that the space of solutions has an ultra-metric structure. 

It will be interesting to determine the AT line by the present procedure which 
has been calculated so far only near the critical point T, [lo, 131 and at T = 0 [26]. 
More calculations for larger systems are required for more precise investigations of 
the low-temperature region, for example, on the determination of the asymptotic 
form of P ( q )  in the thermodynamic limit, and on the further confirmation of ultra- 
metric structures. Concerning the number of pure states, we have only been able to  
show in the present paper the number of local minima of the squared norm of the 
gradient, which may be overcounting. We may take the number N: of local minima 
of the free energy as the number of pure states in the limit N -+ CO. We also 
calculated the configurations which give local minima of the energy, though we have 
not presented them here, and we found that the numbers N: for various values of 
the system size are fitted hy the exponential law as well as f i s  mentioned in section 
3. The coefficient 01 is found to he approximately 0.21 at T = 0. Thus if N; gives a 
correct estimation of N. and if N; is not singular at T = 0 we can conclude that the 
number N,  for the present system obep  the exponential law as in the case of the SK 
model, though the validity of these assumptions is questionable. In any case at finite 
temperatures especially near the critical point, the number N: that we have found 
here is too small to discuss the asymptotic behaviour. There even remains a possibility 
of non-exponential increase of N8 as a function of N .  Thus the determination of the 
total number of solutions of the present system with larger size is also an interesting 
problem in future. 

Finally, it is worth mentioning the relationship between the present models and 
the finite-dimensional models. The closed boundary system is very similar to the SK 
model as we have seen above. There have been reported, however, several results 
which suggest that the nature of the low-temperature phase of the finite-dimensional 
systems is quite different from that of the SK model. For example, the numerical 
calculations by Ogielski [l] and Bhatt and Young [2] suggest that even helow T, the 
EA order-parameter tends to zero in the thermodynamic limit in three dimensions. 
This fact shows a clear discrepancy from the prediction on the SK model. The open 
boundary system is closer to the finite-dimensional systems at least in this point, 
although we can conclude no more about the relationship between them at the 
present stage. 
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Appendix 1. The thermal fluctuation of the overlaps 

In order to estimate the upper bound of the correlation function (up8;up8) let us 
rewrite this quantity as follows: 

( 0 ; P ;  ,Yo) = ra.rP. I J  BJ + mpm"rP. J ' J  + mfmPra. 3 $3 

\ (U ;@;   UT@)^ < 3max( l rp ; l ,  ircl) 

(27) 
... LA*^ P O I  - I POI. C O \  %__^ ... ̂ I....... 
W l l G l G  I i j  = ,ai ; 1. ,,,U> WCI I l d V C .  

(28) 

because I rGI < 1,lrtl < 1, and ]mil < 1. 
Let us estimate the correlation rp, (Sp; Sp). It is obvious that there is one 

ana oniy one cnain of bonds which connects the site i and the site j .  Let us refer 
to the sites along this chain as i,, i,, . . . and i R  where i, i and iR E j. Then we 
can trace out all the degrees of freedom except for the spins on this chain. Thus, we 
obtain a set of effective fields on these spins. That is, for our present purpose, it is 
enough to consider the following chain-Hamiltonian: 

~~ R- 1 R 

%hain - Jir,i ,+,Si,Si,+, - C ( H  + Hip)sip. (29) 
p = 1  p = 1  

Here, H i p  is the above-mentioned effective field. Next, let us trace out Sip (p = 
2,3,4, .  . . , R - 1). The following simple formula is useful for this elimination. 

Let I<,,, IC,, and K,,,., ~~ be real numbers related to each other by 

exp(-K,,S,S,)=constant x Trexp(-Ii7,,S,S, - h',,S,S, - q l S l )  

where q, is an arbitraly real number. Then we have 

(30) S, 

Itanh(ICij)l Q I tanh(Kik)l l  t anh(Kkj) l .  (31) 

Using this formula repeatedly we can get the upper bound for ljijI. Here j i j  is the 
effective coupling between the sites i and j which results from the elimination of Sip  
( p  = 2,3,4, .  . . , R - 1). That is, we get the following pair-Hamiltonian. 

f i i j  - j ; ,  SiSj  - ( H  + Hi)Si - ( H  + H j ) S j  (32) 

with 
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Using this Hamiltonian, we can estimate the correlation function r;: 

where 

iij I tanh(p.fij) v i z  t a n h ( P ( H +  Hi)). 

At last, we arrive at 

IT?. j < p” 

I(% 0,)  I < 3 x ( tmaxPJ.  

I)  \ max. 

This leads to the inequality 

Thus we have 

-0 ( (2-03).  (38) 

In the above derivation, we have assumed that there is an upper bound for the 
absolute values of Jij. This does not hold for the Gaussian distribution. We can, 
however, modify the distribution by limiting the range of distribution in a finite 

such a modification does not change the essencial nature of the system. 
hiem.ai even in such mses, .*re bekeve ihz; if .** ;Ek inter<a! r;F,i,den:!y .;;,be 

Appendix 2. The derivation of the recursive inequality of the variances 

First, let us prove the following lemma which is a key tool for the proof of (12) and 
(13). 

Lemma. Suppose an king spin system is composed of several parts connected to 
each other by a single site. Let us indicate this site by the letter c and each part by 
R, (a = 1 , 2 , .  . . , z ) .  The Hamiltonian of the whole system is 



4868 

where 0, 3 R, U {c ) .  Then the following inequality holds: 

N Kawashima and M Suzuki 

(4% - (4%. f A A  

(.' 
Tre-@na . . . 
Tre-on. 

for an arbitrary value of S, in the first term of the right-hand side. Here, z y f I 
stands for y - IzI < 2 < Y + 121, A is an arbitrary quantity which is defined on n, 
and 

A A  2 max (A)%. - min (A)%. . (41) 
S. S, 

This lemma can be proved as follows. 

It can easily be seen that (40) is a weaker statement than this. 
Next, let the lattice in the above lemma be a Cayley tree, c be a certain site 

labelled by [ j ! .  R, be the set of spins which was denoted as 0; in section 2, and A 
be a certain spin Si ( i  E Rj). In this case, we can estimate the error as follows: 

with the pair-Hamiltonian 
we get 

defined by (32). Similarly to the derivation of (34), 

Therefore, we find 
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using (45). Thus we have 

(Si) ,  zz (Si),, * Z t % .  (48) 

Note that the estimated error does not depend on the boundary field or the bond 
configuration. 

Now, we are at the position to estimate the average and the variance of the 
ovcr!aps. IO! 1 2  first thp &rpregp ...!..p the 

where 

Using inequality (48), we get 

if [f = 0. Strictly speaking, the quantity m , ( A Y , J j )  depends on SG1. We have 
omitted it because the following discussion holds for any value of Si1. One can 
also take m,(AP,  J j )  as the value averaged over S& with an arbitraly non-negative 
weight. 

Then (49) becomes 

where 
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Note that x does not depend on A or J and that it converges to zero when G goes 
to the infinity. Thus, by averaging (52) over A and J ,  we get 

N Kawashima and M Suruki 

As for the variance v ,  we have 

Here we ave used x < 1 and ( N ( G ) / N ) x j  qj (Aj ,J j )  < 1. We have also used 
the inequality (54) to derive the last line. From the above inequalty, we can see that 
II vanishes in the limit C - 00 if d C )  - 0 in this limit because N(O)/N converges 
to 112. 

Simiiariy, d~~ can be expressed by &-:) as foiiows: 

Now, the error term is proportional to 

where j is an arbitrary site located (g - 1 )  steps inside from 80. It can easily be 
seen that there exists such a finite real constant A that 

96+') < Arg (for any 9) (58) 
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since N ( g - l ) / N ( g )  < l / b .  Let T be less than unity. (Thii choice is possible as far 
as t,, < 1.) Then it is obvious from this inequality that 
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