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Abstraci. The nature of the low-temperature phase of the 4-J Ising spin glass on
extended Bethe lattices is studied. It is proved analytically that the distribution function
of overlaps, P(q), has the form P(g) = 6(¢ — §(T, H)) at any temperature when the
open boundary condition is adopted. On the other hand, many approximate solutions are
found for the equations of state for spin glasses on randomly connected lattices which
are locally equivalent to the Bethe lattice. The equations of siate are solved numerically.
The distribution P(g¢) in the low-temperature region is broad but still has a peak. The
marginal stability of the solutions is confirmed numerically. The structure of the sotution
space is also investigated and consequently the present results suggest the existence of
the ultra-metric structure, though the precision of data for the present restricled system
size is not sufficient to exclude other possibilities.

1. Introduction

Various theoretical approaches to random spin systems are classified into essentially
two categories. The first is to treat random systems in finite dimensions by numerical
methods, such as Monte Carlo simulations [1,2) and the numerical transfer matrix
method. The second approach is to try to find various useful concepts for spin glasses
using mean-ficld models such as the Sherrington-Kirkpatrick (SK) model [3] and to
discuss their applicability to real systems, though historically the first one follows
the second. The first approach has a remarkable merit in realization of random
spin systems. For example, the first confirmation [1,2] of the existence of the phase
transition was performed numerically in three dimensions. The divergence of the
correlation time below T, prevents complete understanding of the nature of the low-
temperature phase. On the other hand, the second approach based on studies of the
SK model contributed to finding many concepts about spin glasses such as replica-
symmetry breaking [4, 5], ultra-metricity [6,7], etc. There are, however, several critical
arguments [8,9] which suggest that the nature of the low-temperature phase of finite-
dimensional systems may be quite different from that of mean-field models.

From this viewpoint, it is desirable to investigate another type of mean-field mode]
which is expected to be more similar to real systems than the Sk model. The random
spin systems on the Cayley trees which we study here from this new viewpoint were
originally studied by Matsubara and Sakata [10] using the method of the distribution
function of an effective field. This method proved to be useful in determining various
phase boundaries [10,11] in the T~p diagram with no external field. It is, however,
not so powerful in determining the phase boundary in the T-H diagram. Carlson et
al teported in [12] that all the moments of the distribution function are non-singular
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functions of T and H while it is shown [13] that there exists a transition line in the
T-H plane on which the influence of the boundary condition reaches far inside the
system. The phase boundary may correspond to the AT line for the SK model. There
is, however, no such explicit theory on the present model as Parisi’s theory on the
SK model to clarify the nature of the low-temperature region. There is an expansion
theory [14] on the present model by the replica method. This theory is expected to be
correct near the critical point, but the relationship between Parisi’s order parameter
g(z) and the distribution function of overlaps, P{q), is not so straightforward in this
thory as in the case of the $K model.

Recently Dewar and Mottishaw [15] studied the Cayley tree with boundary
spins connected to each other using essentially the same method as Nemoto and
Takayama [16] used for the SK model. Although their data have relatively large error
bars, they suggested the marginal stability of solutions in a low-temperature region.
Lai and Goldschmidt [17] performed Monte Carlo simulations in various networks.
They suggested that for open boundary systems the distribution P(gq) converges to a
single delta peak and they urged that the low-temperature phase is replica-symmetric,
Their procedure of eliminating the boundary sum is, however, not sufficient in that
they fixed the number of generations to be ¢liminated for all their system sizes. They
also simulated the relevant systems on randomly connected networks with a finite
average of connection numbers and they showed that the behaviour of P(q) in the
spin glass phase is qualitatively different from that in the paramagnetic phase.

In the present paper we first prove analytically that P(qg) for open boundary sys-
tems reduces to a single delta peak even if the careful limiting procedure is adopted.
Next, for randomly connected networks with three neighbours for each spin, we show
numerical results similar to, but more improved in accuracy than, those of Dewar
and Mottishaw. We also discuss several features characteristic of the low-temperature
phase.

2. P(q) for open boundary systems

As was emphasized by one of the present authors [18,19], the concept of emerging
order induced by the increase of the system size for a fixed boundary field plays an
essential role for the study of any phase transitions.

We show first the equivalence of two definitions of P{g) for open boundary
systems. This equivalence is proved for the sk model in [20]. Next we show that
the variance of P(q) vanishes at any temperature and in any homogencous external
field. The Hamiltonian of our system is

HA,J)=— Y. 4,58, -HY S - Y A8, (1)
{i,g) iefl ieafl
€D

To define overlaps, let us consider two systems which are different from one
another only by their boundary fields A; (i € 8{). As was pointed out in [12]
and [15], one can expect to find bulk behaviour only in a small region far from the
boundary. This can easily be seen in an example of ferromagnets on the Cayley trees
[21] in which there exists no spontaneous magnctization at any temperature when

the magnetization is defined over the whole system. Hence we define overlaps on a
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Figure 1. The support of the gverlaps is a sublattice 12 which is embedded in 2. The
random field is applied on the boundary of £2.

sublattice 2 with the radius G (see figure 1) and take the limit G — oo after taking
the limit G — oo, where G is the radius of §.

The two definitions of the distribution of overlaps are given in the following, by
specifying each configuration of the boundary field by Greek letters. Namely we have

P(q)zf(é(q—j\lv—,gm?m?\” | @

\ ien 14,
= [((6(q — DNl (3
= — Z Sz 8P (4)
aEﬂ

in our system with the boundary fields {A®}, where m® = (S¢) and S¢ is a spin
variable which takes +1 or —1. The above expectation values are defined by
Tr[exp (-—,67‘{(!\", Jy— ,B'H(Aﬁ,.f)) X]

TI'[EXp (—ﬂH(A", ‘]) - ﬂH(Aﬁa -]))]

(X) =

-1

(Xha= W{A"}W{A"}X( > W{A“}W{Aﬁ}l)
{A=},{A%) {Ae},{A%}

and

— (.
[X); =3 WX | Y WiJ} )
{7} )

where W {A°} and W{J} are the weights of the boundary ficlds and of the bond
configurations, respectively. In order to show that P(q) = P(q), it is sufficient to
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prove that the variance of the distribution function Pﬁf’f Nq) = (6(g — 4)) is equal
to zero for any A%, A® and J, since the equation

<a(q—%zijsf'sf)>_a(q__.zm m) .

i€n

holds in this case. The amplitude of the thermal fluctuation of the overlap g for
certain realization of the boundary-field configuration and of the bond configuration

can be written by correlation functions between a"“cj and a‘*ﬁ where o °’ﬂ = S"‘S”
That is, we have

. 12 1

(@)= a)" = 37 2 (eF;057) ©)
ij

Y. Vi=/{¥YV\_ fYvV/iLny Fia

\1\,3!—\1‘1’ \Jll\l,. \l’

As shown in appendix A, the quantity |(a°’ﬁ ,a“'a M is bounded from above by

[tanh(8J,,,,)]® with the maximum absolute value of the coupling, J,,.,. Thus

it is easily shown that {42} — {g)* converges to zero in the thermodynamic limit.
Hence the equivalence of the two definitions is confirmed.

Naovt we ehmw how Dfn\ in 2 redncac tn a cingle dalta funectinon Oinly tha
LRl WA SHW Y S g LR ) dLRRLTs W od slipal Glaid tURGHON, Sy wav

outline of the proof on thns reduction is shown here and details are described in
appendices. Let us first present the definitions of the relevant quantities, as follows:

PPAI) = = ST USENSD)

ket (8)
o a a
(S[J]’ S[J], i J) = Z (Sk >'Hj (Sk)'H,’
k 0,
and
P (AL I = Y w(SEw(Si)a (G Sh Ay T3)- )
g5t

Here, {j] indicates the ‘mother’ site of the site j, and Q i (or Q i) is a subset of
2 (or Q) which are connected to the centre through the site j (see figure 2). The
symbol A; in such expressions as q}’"@ (A, JJ.) indicates all the surface-field variables
charged on Bﬂj, and, similarly, J, indicates all the bonds that have at least one

end point in Q ;- Although these symbols are the same as local variables at the site
labelled by *7°, there is no fear of confusion since the meanings of the symbol will be
clear from the contexts. The weight w(SL‘;]) is an arbitrary distribution function, and

(- ')'H,- is defined by

Tria fexp(—BH,(AZ, J;) - BN, (Aﬂ J )X

{(X)y ] A A il
HJ'(AJ’JJ = - Z Jk,[k]SkS[k] - E HS, - Z A8y

ke, kef2; keof;
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In addition, let us define several moments of the distribution functions.

v=1I-m? 13 [(a(A,)%),]; m = [g(A, )],

W9 = 10) _ (ple)y2 (11)

9= [g;(A; 00N, ), ™ =[(g(A5.90), 15,

where j is an arbitrary site located (g ~ 1) steps inside from the boundary Q2. Here
we have omitted the replica indices o« and 5.

0 DIQi
i

ph
. _.4:: :

N I
.,

Center =

Q;

Flgure 2. €); is 2 branch which is connected 1o the site i. The overlap ¢;(A;, Ji} in
the text is defined on €.

Then we can show the following equation.
v= 26+ 0((z - 1)7%,15,,). (12)

Similarly, the variance v{%) can be evaluated using the following recursive equation.

1

He+h) = lv(9)+o((z—1)-9,tg,ax) (9=1,2,...,G-1) (13)

It can be seen by solving these two equations that the variance v converges to zero
in the limit G — co. The details are given in appendix 2.

It should be noted that the absence of variance which has been proved here is
essentially different from the fact that there exists no finite spontaneous magnetization
in a ferromagnetic spin system on the Cayley tree [21]. The reason for no spontaneous
magnetization in the latter case is that the ‘magnetization’ was defined over the whole
system Q. If we define magnetization only on © similarly to the above definition of the
overlaps, we find that a finite magnetization is induced by an infinitesimal magnetic
field applied on 312

As we have mentioned in section 1, there exists a certain phase boundary in the T-
H plane corresponding to the AT line. The low-temperature region is characterized
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by the fact that an infinitesimal fluctuation of random fields on the boundary 5§}
induces a finite fluctuation in the expectation value of each spin in 2. On the other
hand, it has been clarified that the distribution function P(q) for the open boundary
systems reduces 10 a single delta function at any temperature and in any homogeneous
external field. In this sense, we may call the low-temperature phase of open boundary
systems ‘replica-symmetric’. We can also conclude from these facts that there exist
many phases in the low-temperature region and that the expectation values of spins
change independently, in essence, when one jumps from one phase to another. As a
result, the relative fluctuation of the macroscopic overlap function becomes vanishing
below the critical temperature.

3. Randomly connected systems and numerical calculations

In this section we discuss spin glasses with ‘closed’ boundary conditions. There are
several versions of this type of boundary conditions. For example, one can define
Cayley trees with connected boundaries [14] in which the boundary sites are connected
randomly to each other so that the connection number may be equal to z for each
site. In these lattices there is no topological equivalence among all the sites and the
lattice has one special ‘centre’ site (or bond). Another possible choice is to consider
randomly connected networks [16] with a finite average of connection number in
which each arbitrary pair of sites arc connected with probability z /N, where N
is the number of sites. One can also define randomly connected networks with a
finite fixed connection number in which 2N /2 bonds are distributed randomly with
the constraint that > bonds should meet at each site. We believe that the essential
properties derived from the last two definitions are qualitatively the same in a large
enough system. In a finite system, however, some peculiar lattices which make the
reslt obscure are more likely to be generated by the second definition than by the
last one, because of a finite ratio of sites at which less than (more than) z bonds
meet. In the present paper we adopt the last definition.

We investigate, by means of numerical calculations, the +J Ising model on the
networks with z = 3 defined above. The distribution of the coupling is taken to be
symmetric (l.e. P(J = £1) = % ). Unfortunately there is no satisfactory argument
on the relationship between the solutions of the equations of state for finite systems
and the pure states in the thermodynamic limit. Here we assume that two types of
configurations of finite systems correspond to the configurations of pure states in the
limit. Therefore we search the configurations which satisfy one of the following two
conditions.

of .
ey Bm, = 0 (14)
8’ af

(11 =0. (15)

We call hereafter the configurations satisfing the conditions I and II, of type I and
of type II, respectively. It is natural to expect that the configurations of type I which
minimize locally the free energy are continuously connected to the pure states in
the thermodynamic limit. On the other hand, the configurations of type I minimize
the free energy with the constraint that the susceptibility matrix should be singular.
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Therefore, it is also natural and is supported numerically [15] for the sk model
that the configurations of type II correspond to pure states if the pure states are
marginally stable as is conjectured [22]. This marginal stability for the present system
is supported by the calculations for the solutions of type I, as will be presented below.
These above-mentioned strategies are originally adopted in the investigations of the
sK model by Nemoto and Takayama [16]. The conditions (14) and (15) can be stated
more simply. Namely, the solutions should give the }ocal minima of the squared norm
g{m} of the gradient of the free energy defined by

s(m} =3 (-a—an-:f{m})?. (16)

The free energy and its derivatives are given as follows [23]:

1 1 . 1-m, 1-—m,
ﬁf{m}Ez( +2m' log F Lo 2m')

2 2

1 (1-3)(1 =& /t])(1 - €4, /13) 12
+E{Iog[1+fufjs/tq ( (l—m?)(l—m}) ) ]

. L. 7 ]
J 1}

+ [tauh'l%i - tanh‘lmi] m; + {tanh'l% - tanh‘lm'l m.}

- BHY m, an
i
_q8f _ -1 H tanh~? 18
0= 2L = tanh-tm, — 81 - tanhe, as)
t J
32f 1 1 t?j - &:2_1
Bfi=8 = +> ; : (19)
i am;? 1 —m? - [(1 _ t?‘j)z - 4tij.uiji‘ji]1/ 1- ij
o f —1;;
' Om;dm; [1- t3)2 - 4t=‘j“ij“‘ji] ! ‘
where
1/2
(= (1-t%) - (1 —t%)2 — 4t 055045)
v 2045

We can obtain the equation of state by setting the right-hand side of [18] equal to zero.
It should be noted that we have assumed here, even in the low-temperature region,
the applicability of the equation of state (i.e. [18]) which is obtained by supposing that
there is no multi-body effective field. That is, we have assumed that tracing out the
degrees of freedom of all the spins except one site and its nearest-neighbours results
in the appearance of certain effective fields on the nearest neighbour sites, It is clear
that this assumption is not correct in finite systems, because there exist many loops
with finite length which induce multi-body effective fields. In the thermodynamic
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limit, however, the probability is zero that we find at least one finite loop which
includes a certain spin. Thus we can expect that there exists a certain condition under
which the above assumption is correct in the thermodynamic limit. For example, this
assumption probably holds in the paramagnetic phase in which there is essentially
only one solution. We believe also that there is a validity condition on the equation
of state which corresponds to the condition for the sk model given in [22). This
validity condition is equivalent to the convergence condition of the expansion series
of Gibbs® free energy with respect to the coupling. The boundary of the convergence
region is located at the point where the susceptibility matrix is singular [24]. Thus
we eliminate solutions for which the Hessian matrix (f;,) has negative eigenvalues,
because these solutions are expected to lie beyond the validity condition.

In our explicit calculations we adopted the Marquardt method for minimizing
the function g{m;} using its first and second derivatives. We have also used the
steepest-descent method when the Marquardt method is unstable.

12

10

NUMBER OF SOLUTIONS
o

1|||||1111111!I1111[111|||

T R B | P R T | | I R B | J_ s
O 1 1
0 300 1000 1500 2000

NUMBER OF TRIALS

Figure 3. Number of solutions (N,) versus number of trials. N =20 and T =0.5.

We have investigated finite systems with the numbers of spins, 12, 16, 20, 24, 28
and 40. For each system size we generated 100 bond configurations. For ¢ach of
these configurations, 100 through 4000 trials were performed. One trial starts with
generating the initial spin configuration {rn;}, next the m,’s are changed one by one
50 that the exchange energy may be lowered until the stable configuration is reached,
and then all the m; are changed simultaneously by the above algorithm to lower
the function g{m;}. During the first two of these three processes, the {m;} are
restricted to be +1 or —1. The numbers of trials are determined so that almost
all the solutions may be found. The dependence of the numbers of solutions on
the typical time (numbers of trials performed) is shown in figure 3 for N = 20 and
T = 0.5. Since we could not afford a sufficiently large number of trials to find almost
all the solutions for N = 40, we did not use the data for N = 40 in estimating the
coefficient & defined below. The numbers N/} of solutions of type I are found to be
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Number of Solutions

Number of Sites

Figure 4. Total number of solutions Ny = NI+ NI! versus system size. T = 0.5, 0.6,
0.7, 0.8, 0.9, 1.0, 1.1 and 1.2 from the top to the bottom.

0.20 R
0.15 -]
I x J
FE o100 -
< i x ]
0.05 % -
i ¥ x :
0.00 PR SRS BRI RVRTSR: S o wl
0 025 0.5 0.75 1 1.25
T

Figure §. The coefficient &(T") defined by Ny(T,N) o exp(&(T)N) versus temper-
ature. The exact critical point Te is 1/tanh=3(1//2) = 1.13.

very small compared to those of solutions of type II (N!)., There are only 0,1 or 2
solutions of this type for each bond configuration at any temperature below 7. The
size dependence of N, = N} + NI is shown in figure 4 for various temperatures.
The data are well fitted by the exponential law as is also the case with those for the
solutions of the TAP equation (25).
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In figure 5 we show the coefficient &(T') defined by
N(T,N) x exp(&(T)N). (21)
Although it must be noted that we cannot identfy N, with the true number of pure

states N, because of the degeneracy of solutions in the limit N — oo, we can see
from figure 5 that the onset of non-zero &(T') occurs at the critical point T,

:I:}‘J 10.0 E— _E
L B
2 50 ]
o) L J
b}
B0 L |
=
7
$ 1o F E
g 05 | f
Ul | J
)
L r |
[
01 ' ! ‘ —

10 20 30 40 50
Number of Sites

Figure 6. ‘The smallest eigenvalues of the Hessian matrix f;; for type I solutions.
T =0.5,0.6,0.7,0.8,0.9 and 1.0 from the top to the bottom.

In figure 6 we show the average of the smallest eigenvalues for the solutions of
type I. We can see from this figure that the smallest eigenvalues tend to zere when
the system size becomes large. This supports the conjecture of the marglnal stability
mentioned above.

We also calculate the distribution function of the overlaps

P(q) = I:Zw#wyé(q—-—jlemfm?)} (22)
oV H

J
where
-1
w, = exp(~BF{m!}) (Zexp(~ﬁF{ms‘})) : (23)
v
Here u and » specily an arbitiary pa‘r of solutions obtained. In figure 7, P(q) is

shown for N = 40 and T = 0.6. As is expected, the overlaps in the low-temperature
region have broad distributions, correspondingly to the existence of many pure states
in the thermodynamic limit. The size dependence of P(g¢) is not clear enough
to predict in detail the shape of this function in the thermodynamic limit. More
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Figure 7. The distribution function of overlaps for ¥V = 40 and 7" = 0.4.

calculations for larger systems are required in order to determine P(q) precisely.
On the other hand, above the critical temperature, P(g) is a single delta function,
because in this region there is only one solution (m; = 0 for all ) for any bond
configuration.

Furthermore we examine the ultra-metric structure which is proposed for the
structure of the solution space of the sk model. We show in figure 8 the following
distribution function.

Pg,a5) = /dQ3(P(QI’Q2’Q3)+ P(g3,9,,93))/2 (24)
where
P(q,8,q5) = D w,w,w,8(q, — min({g"",¢"*,"*}))

8y — mid({** 4%, ¢}

x 6(q3 — max({g"",q"%, ¢"*}}). (25)

We can see, from figure 8, that there exists a strong positive correlation between g,
and ¢, suggesting the ultra-metricity

Hh=90R24q (26)

though we can not exclude other possibilitics.

4. Summary and discussions

We have proved that the distribution function of overlaps P(q) consists of a single
delta peak in the case of the Cayley trees with random external fields applied on their
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1.0 . -
0.5 | -
9, 0
o5k _
”1'0-1.0 0% 0 05 1.0

9,

Figure 8. The distribution function P(g;, g2) defined in the text. The degree of darkness
of the boxes indicates the magnitude of P(q;, g2). For example, white space means that
P{g1,q2) < .25 and the darkest boxes mean that P(g:, g2} > 2.00. Here we have
studied the case that 7' = 0.5 and N = 40.

open boundaries. On the other hand, P{q) has a non-trivial structure in the closed
boundary case. We can interpret these facts as follows: Even in the closed boundary
case the local structure of the lattice is the same as in the open boundary case as far
as the system size is infinite; that is, for an arbitrary spin one can find a Cayley tree
embedded in the system with an arbitrary size which contains the spin as its centre.
In such cases, every pair of boundary spins of this Cayley tree is connected by very
long chains of bonds outside the tree. These chains are responsible for the different
behaviours caused by the different boundary conditions. In the paramagnetic phase,
however, the range of the correlation is short and these long chains have no influence
on the spins at their end-points. As a result, there is no difference between the open
and the closed boundaries in the paramagnetic phase. At the critical point, the range
of the correlation becomes infinite. At this point, the correlation caused by the long
chains outside becomes finite and, at the same time, the influence of the boundary
fields reaches the centre spin. Hence the nature of the open boundary system differs
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from that of the closed boundary system in the low-temperature region.

In both two cases there are many phases below T,.. In the open boundary case,
however, the expectation values of spins change independently to each other when one
jumps from one phase to another. As a result, P(g) reduces to a single delta peak.
It is well known that in higher dimensions than three the ferromagnetic Ising model
has many phases characterized by domain walls although we do not call it replica-
symmetry breaking, We consider that the many phases which have been observed by
charging infinitesimal random fields are similar to these domain wall phases. From
this point of view, we should not call the low-temperature phase of the open boundary
systems replica-symmetry breaking.

On the other hand, the expectation values change coherently in the closed bound-
ary case and P(q) has a non-trivial structure. The marginal stability of the solutions
has also been confirmed numerically in this case (section 3). The logarithm of the
number of solutions is proportional to the system size and the coefficient & is finite
below T.. It is also suggested that the space of solutions has an ultra-metric structure.

It will be interesting to determine the AT line by the present procedure which
has been calculated so far only near the critical point 7, [10,13} and at T = 0 [26].
More caiculations for larger systems are required for more precise investigations of
the low-temperature region, for exampie, on the determination of the asymptotic
form of P(gq) in the thermodynamic limit, and on the further confirmation of ultra-
metric structures. Concerning the number of pure states, we have only been able to
show in the present paper the number of local minima of the squared norm of the
gradient, which may be overcounting. We may take the number N! of local minima
of the free energy as the number of pure states in the limit N — oco. We also
calculated the configurations which give local minima of the energy, though we have
not presented them here, and we found that the numbers N,,I for various values of
the system size are fitted by the exponential law as well as N, mentioned in section
3. The coefficient « is found to be approximately 0.21 at 7' = 0. Thus if N} gives a
correct estimation of N, and if N} is not singular at T = 0 we can conclude that the
number NV, for the present system obeys the exponential law as in the case of the sk
model, though the validity of these assumptions is questionable. In any case at finite
temperatures especially near the critical point, the number N} that we have found
here is too small to discuss the asymptotic behaviour. There even remains a possibility
of non-exponential increase of N, as a function of N. Thus the determination of the
total number of solutions of the present system with larger size is also an interesting
problem in future.

Finally, it is worth mentioning the relationship between the present models and
the finite-dimensional models. The closed boundary system is very similar to the SK
model as we have seen above. There have been reported, however, several results
which suggest that the nature of the low-temperature phase of the finite-dimensional
systems is quite different from that of the sk model. For example, the numerical
calculations by Ogielski [1] and Bhatt and Young [2] suggest that even below T, the
EA order-parameter tends to zero in the thermodynamic limit in three dimensions.
This fact shows a clear discrepancy from the prediction on the sK model. The open
boundary system is closer to the finite-dimensional systems at least in this point,
although we can conclude no more about the relationship between them at the
present stage.
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Appendix 1. The thermal fluctuation of the overlaps

In order to estimate the upper bound of the correlation function {a??

; ;cr;'ﬂ ) let us
rewrite this quantity as follows:

(67%,03%y = TETE + mEmeTE + mfmire @n

[(e??i058)| < 3max(ITg1,iT5) (28)

because [I'f;| < 1, |F | <1, and |m,;| < 1.

Let us estimate the correlation I'Y; = (Sg; S“) It is obvious that there is one
and only one chain of bonds which connects the Site i and the site J. Let us refer
to the sites along this chain as i,,7,,... and i, where i, = i and i5 = j. Then we
can trace out all the degrees of freedom except for the spins on this chain. Thus, we
obtain a set of effective ficlds on these spins. That is, for our present purpose, it is
enough to consider the following chain-Hamiltonian:

R-1
Hcham = Z le,i,,.i.; Sa, fpp1 Z(H + H:,)Sn, (29)

=1 p=1

Here, H,-, is the above-mentioned effective field. Next, let us trace out 5, (p=

2,3,4,...,R—1). The following simple formula is useful for this elimination.
Let K_;, K, and K,,, be real numbers related to each other by

exp (_' mn mSn) = constant x TI‘ exp( I‘mls Sl I(Iﬂ.SISn - nlsl) (30)

where #; is an arbitrary real number. Then we have
[tanh( K ;)| < |tanh( K M tanh( K ;)| (31

Using this formula repeatedly we can get the upper bound for |J;;|. Here J; is the

effective coupling between the sites 7 and j which results from the elimination of S;

(p=2,3,4,..., R~ 1). That is, we get the following pair-Hamiltonian.
Hij=-J;5:8; —(H+ H)S; - (H+ H,)S; (32)

iy
with

R-1
[tanh 6J.J| H {tanh 8J; (33)
i=1

fpidpdL |
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Using this Hamiltonian, we can estimate the correlation function T'%:

| = |(3,SJ)H' {Sidx,, (S )-u.,
_ (1 -n))(1-n?)
1+ f.'_,'ﬂ,'n_;)z
< 1l (34)

where
f,-j = tanh(,@j,-j) n; = tanh(B(H + H,)). (35)

At last, we arrive at

R .
IJ l tm;,x (

iTs
This leads to the inequality
I <6'-; aj) | <3x (tmax )R”' (37)

Thus we have

. 1 o .
<q2> F E < iﬁ’ _7 Nz z r}:gx

|J

l.lJen -JEn
3 Roi . ( -{z—- 1)Gtmux)
"<- N . tmax - N 1+2 tmax 1— rz _ l‘t___.
'En s mnax Ld
-0 (G — o). (38)

In the above derivation, we have assumed that there is an upper bound for the
absolute values of J;;. This does not hold for the Gaussian distribution. We can,
however, modify the distribution by limiting the range of distribution in a finite

svan i ennh foced A 158 HE s we tala intarunl cnfficiantly wida

ln[cNdl €vEén ll'l bl..lLll CAdCS., VWO UCILEVC- that u wC LdRU ulla interva auul\duuuy wiae
such a modification does not change the essencial nature of the system.

Appendix 2. The derivation of the recursive inequality of the variances

First, let us prove the following lemma which is a key tool for the proof of (12) and
(13).

Lemma. Suppose an Ising spin system is composed of several parts connected to

each other by a single site. Let us indicate this site by the letter ¢ and each part by
2, (a=1,2,...,2). The Hamiltonian of the whole system is

H=HS,)+ ) H,

Ho=—- 3. Jy;5S;,—H S (39)

(iwj);irjeﬁﬂ i€fl,
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where Q, = Q_ U {c}. Then the following inequality holds:

{(Ady = (A)y, £ DA (40)
_ Tre #Ma ...
(e = —romam

for an arbitrary value of S_ in the first term of the right-hand side. Here, z = y + 2

stands for y — |z} € ¢ € y + |2|, A is an arbitrary quantity which is defined on 2
and

AA= max (A)y, — n}gin (A)y, - (41)

]

This lemma can be proved as follows.

() Trg_e~AMe (]_[ 22 Trq € Jc""‘-':')Tr e~ M. 4
A)y = <
" Trg e~PH. (H 4o Trg e=#He )Trn e~FH,
= Trw(S,) (A)y, (42)
where
e~ fH. 1, Trq e PHy
w(S,) = ( L. ) . (43)
Trg, e-fMe (Hp Trg, e’ﬂ”r)
Equation {42) lcads to
min (A)y, < (A)y € max{A)y, . 44)

It can easily be seen that (40) is a weaker statement than this.

Next, let the lattice in the above lemma be a Cayley tree, ¢ be a certain site
labelled by [7], Q. be the set of spins which was denoted as Q. in section 2, and A
be a certain spin S (1€Q;). In this case, we can estimate the error as follows:

. = S. — min (5.
Aml ng.:lx( !)‘HJ- rls]{l;l ( 1)1’(,’
= (Sibytgy, — S (Sdag, (45)

with the pair-Hamiltonian ﬁw defined by (32). Similarly to the derivation of (34),
we get

(S')ﬁ = L {P]i ] . (46)
b1+ "itLi]iSLi}
Therefore, we find
Am; =2 < 2t < 2 47
Itblll | [J]l* max ( )
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using (45). Thus we have
{Sidp ™ (Sidyy, & 2tmas (48)

Note that the estimated error does not depend on the boundary field or the bond
configuration.
Now, we are at the position to estimate the average and the variance of the

.
overlaps. Let us first consider the average value of the overlaps.

m= [(‘I(A? J))A]J
aA ) = 5 S mi(AT, Iy (A8, )
1

= (A% Nm(AP, D)+ 30 37 m(A%, )m (A%, 0)  (49)
Filil=0 kefy;

where
m (A%, T} = (Sp)y - (0
Using inequality (48), we get

my (A%, J) = m (A7, J;) £ 2tRe
m(AT, J;) = (Sidy, (31

if [j} = 0. Strictly speaking, the quantity m;(Af,J;) depends on S5 We have
omitted it because the following discussion holds for any value of Sfj)- One can
also take m (A}, J;) as the value averaged over SE] with an arbitrary non-negative

weight.
Then (49) becomes

1
q(A,J)zﬁ{:l:1+ > Z[mk("\?sJj)mk(Af’Jj)iStgg:]}
#ili]=0keq;,

1 o
NN D3 muAR )M (AS, ) £ 6x

7ils]=0 kEQ;

N(&)
> (A, ;) £ 6x (52)
Jili=0

o
-

where
1 .
X= 5, tmek
el
= 1+ Ztmax(bGigax - 1)/(btmax - 1)
1+ 2(b¢ -1)/(b-1)

(b=z~-1).  (53)
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Note that x does not depend on A or J and that it converges to zero when G goes
to the infinity. Thus, by averaging (52) over A and J, we get

NG

m =

zm (¢ + 6x. (54)
As for the variance v, we have

v = [ q(A,J)g)A]J — m?

(G)
<('NTZQJ'(AJ;,J,')=E6X)2>] - m?
J Al

X2

~ /‘{ N(G) T‘,_/A r \'\2\ ] Csml L1090 282
~ \\ N L‘ 1\11’,-).’}}/ J ({3 I.I.&XIDUX
L J Al g
()N
~ (NN ) {19 4 2(z = 1)(m(9)?} - m? £ 48
(@) 2
~ (Eﬁ—) 200 4 96y. (55)

Here we have used x < 1 and (N®/N)Y . q;(A;,J;) € 1. We have also used
the inequality (54) to derive the last line. From the above inequalty, we can see that
v vanishes in the limit G — oo if v(S) — 0 in this limit because N(G)/N converges
to1/z.

Simiiariy, v{9) can be expressed by v(7=1) as foliows:

(=103 ?
w19 (NN(Q) ) (z— 1o~ £ 9659, (56)

Now, the error term is proportional to

1 o (b=1) (bt.u)I -1
@ = i = o b=2-1) (57
X N ,-Ezn’. max (b9 ~ 1) (btmax 1) ( z )« }

where j is an arbitrary site located (g — 1) steps inside from 3. It can easily be
seen that there exists such a finite real constant A that

96x'9 < Ar? (for any g) (58)
when
7> max{57!, 1.0 (59)

Finally, we arrive at

v®) < (1/6)v9=1) 4 Ars (60)
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since N~ /N < 1/b. Let r be less than unity. (This choice is possible as far
as t_ ., < 1.) Then it is obvious from this inequality that

v (g — o0). (61)
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